

GEOTERMIA SUPERFICIAL

Aplicações de sistemas geotérmicos - Casos de estudo

Aproveitamento Geotérmico: Edifício Phoenix (Lisboa) Estudo Geológico e Execução do Colector Vertical

Pedro Madureira

29 SETEMBRO 2023

Dimensionamento de Sistemas Geotérmicos Superficiais

O estudo de viabilidade de um projecto geotérmico superficial tem duas vertentes principais

- Informação relativa ao edifício: necessidades de aquecimento, arrefecimento, performance sazonal
- Informação relativa ao subsolo: formação geológica e hidrogeologia

VIABILIDADE Parâmetros relacionados com a estrutura construir

- Localização Geográfica;
- Superfície total de climatização;
- Arquitectura (plantas e cortes da estrutura, piscinas e outras instalações)
- Tipo de construção (eficiência, exposição solar, materiais de isolamento)
- Tipo de propriedade (agrícola, industrial, etc)
- Tipo de utilização
- Requisitos de temperatura para os sistemas de distribuição da climatização (bomba de calor, depósitos de inércia, bombas de circulação, ventiloconvectores, lajes termoactivas, etc..)
- No caso de já haver edifício fazer levantamento das suas características térmicas e arquitectónicas

VIABILIDADE Parâmetros relacionados com o terreno

- PDM, cadastro da propriedade e outras questões de ordenamento envolvente, confrontações, uso do solo, arqueologia
- Condicionantes ambientais
- Área disponível para perfuração
- Contexto geológico formações ocorrentes, geomorfologia, hidrogeologia, hidrografia, tectónica e sismicidade, recursos geológicos, etc.
 - Fase 1: Análise bibliográfica e reconhecimento geológico de superfície (acessos, topografia, medição de níveis de água, geomorfologia, hidrografia, arqueologia, etc)
 - Fase 2: Execução de furo piloto e realização de ensaios in situ

Caraterização Geológica - Furo Piloto

- perfil litológico
- grau de fraturação
- hidrogeologia (posição do nível freático, aquíferos, produtividade, rebaixamento, hidroquímica, etc.)
- Parâmetros de perfuração (vazios e cavidades, capacidade de perfuração, diâmetros, necessidade de revestimento, velocidade de perfuração)
- Permite realização de ensaios para obtenção de parâmetros *in situ* (TRT, Bombagem, Diagrafias, etc.)
- Estimar prazos de execução e custo de perfuração (rotary, roto-percussão, entubamento, desarenador, polímeros, lamas, etc) um dos aspetos críticos em termos de viabilidade económica é o custo dos furos geotérmicos e respetivos permutadores
- Informação acerca da aplicabilidade da sonda e materiais de enchimento peso, grout (estimativa de volume e pressão de injecção)

Caraterização Geológica - Ensaios

Os principais dados geológicos a considerar são:

- **Tipo e Dureza das Formações** influencia métodos de perfuração;
- **Propriedades térmicas** influenciam o projecto e condições de produção/exploração;
- Água Subterrânea afecta projecto, dimensionamento e perfuração (execução);
- **Temperatura do terreno** influencia o projecto.

Sistema fechado (média e grande dimensão) – TESTE DE RESPOSTA TÉRMICA (TRT)

O **TRT** permite obter a condutividade térmica do subsolo, a temperatura em "repouso", a resistência térmica entre o fluído e o terreno (tubo, enchimento) e a capacidade térmica volumétrica.

Sistema aberto – ENSAIO DE BOMBAGEM (EB)

O **EB** permite obter *in situ* diversos parâmetros hidrogeológicos essenciais para o projeto de um sistema aberto - permeabilidade, produtividade, entre outros

TESTE DE RESPOSTA TÉRMICA

Objectivo: obter *in situ* as propriedades térmicas do subsolo, mediante a entrega de uma taxa de energia constante por um período de tempo considerável.

• temperatura do solo imperturbável [T0]

Temperatura média ao longo da profundidade do furo (BHE). Uma TO alta aumenta a eficiência no modo de aquecimento.

condutividade térmica [λ]

Capacidade do solo / rocha para conduzir o calor. Uma maior condutividade térmica aumenta a eficiência do colector (BHE). O calor é transportado mais rápido quando a condutividade é maior. Este parâmetro é específico do local e não pode ser influenciada pela engenharia.

• resistência térmica [Rb]

fluxo de calor transferido entre o fluido e o furo. Pode ser influenciado pela engenharia.

TESTE DE RESPOSTA TÉRMICA

 O Teste de Resposta Térmica permite conhecer a propriedades térmicas do furo geotérmico e terreno envolvente

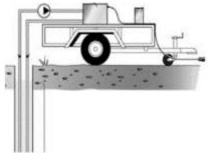
 Com o conhecimento destas propriedades térmicas é possível obter o numero correto de comprimento dos furos geotérmicos de modo a satisfazer as necessidades energéticas da bomba de calor

• É frequente encontrar diferenças importantes entre os valores previstos e os valores

resultantes do TRT

Some	tests	done	by	UBeG
------	-------	------	----	-------------

Nr	Geology	estimated λ_{eff}	Messured λ_{eff}	r_b
1	Limestone	2,4 W/m/K	2,7 W/m/K	0,10 K/(W/m)
2	Gravel / Sand wet	2,2 W/m/K	3,1 W/m/K	0,10 K/(W/m)
3	Mergel ("Emschermergel", Cretacious)	2,0 W/m/K	2,0 W/m/K	0,12 K/(W/m)
4	Sand/Mudstone, (Cretacios)	2,1 W/m/K	2,3 W/m/K	* 0,08 K/(W/m)
5	Sand and Clay (Quartary/Tertiary)	2,3 W/m/K	2,8 W/m/K	0,11 K/(W/m)
6	Sand and Clay (Quartary/Tertiary)	2,3 W/mK	2,3 W/m/K	* 0,08 K/(W/m)
7	Sand and Clay (Quartary/Tertiary)	2,3 W/mK	2,2 W/m/K	* 0,07 K/(W/m)
8	Marl, Clay	2,2 W/m/k	2,5 W/m/K	0,12 K/(W/m)
9	Sand (Quartary)	2,4 W/m/k	2,5 W/m/K	0,13 K/(W/m)
9	Sandstone	2,3 W/mK	3,2 W/mK	0,09K/(W/m)
10	Schluff, sandig (Quartär/Tertiär)	2,4 W/mK	3,4 W/m/K	* 0,06 K/(W/m)



TESTE DE RESPOSTA TÉRMICA

Equipamento SYNEGE para realização de TRT (*):

Consiste em:

- Fonte de calor;
- Bomba de circulação;
- Sensores e sistema de aquisição de dados

Parâmetros a registar:

- Temperatura de ida
- Temperatura de retorno;
- Caudal e Entalpia;
- Potência eléctrica.

(*) desenvolvido em parceria com EST/IPS

ENSAIO DE BOMBAGEM - PARÂMETROS HIDROGEOLÓGICOS

As propriedades mais importantes para o dimensionamento de um sistema aberto (também importantes no dimensionamento de sistemas fechados) são:

- Geometria do aquífero (limites de área e espessura)
- Posição freática (do lençol freático ou do nível hidrostático)
- Gradiente de águas subterrâneas (detectar a direção do fluxo natural)
- Condutividade hidráulica (permeabilidade)
- Transmissividade (condutividade hidráulica x espessura)
- Coeficiente de armazenamento (rendimento em função do volume)
- As condições de fronteira (limites circundantes, positivos ou negativos)

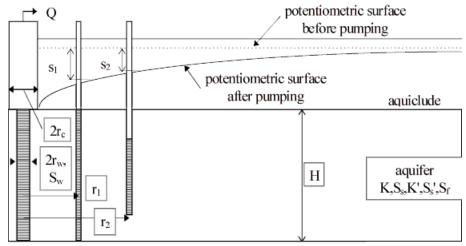


Figura extraída do manual Geotrainet – legenda: Hydraulic properties of an aquifer are obtained by a longer pumping test where a number of observation wells or pipes is used to determine the shape of the draw down cone

PARÂMETROS SISTEMA ABERTO

Os sistemas em circuito aberto podem conter um certo número de poços normalmente colocados no mesmo aquífero. A função destes furos pode ser a extracção, a injecção ou a extracção e a injecção de água.

- Um poço deve cumprir os seguintes requisitos funcionais:
 - Permitir a entrada de água, ou saída (injecção), com a menor resistência ao fluxo possível
 - Extrair água sem impurezas provenientes do aquífero
 - Construído de uma forma a que o aquífero fique protegido de contaminações
 - Durar por um longo tempo sem problemas de corrosão ou entupimento
 - Numa instalação em sistema aberto, os principais parâmetros a medir nos poços são os seguintes:
 - Rebaixamento em função do caudal de extracção
 - A pressão de injecção em função do caudal
 - As taxas de caudal cada poço
 - As temperaturas dentro e fora do furo

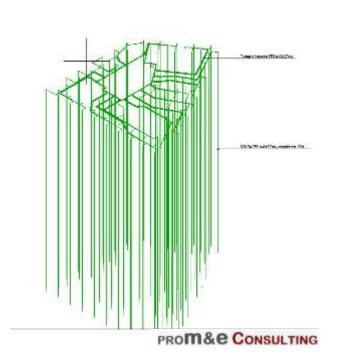
Uma compreensão básica da hidrogeologia do local é determinante para o projeto, principalmente porque:

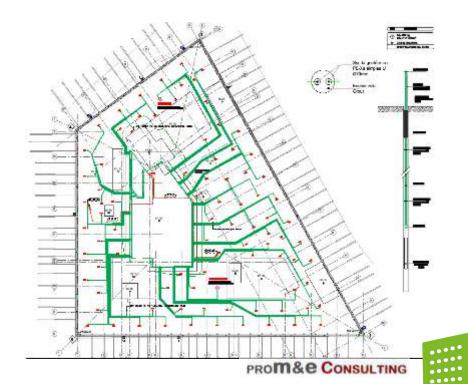
- A água influencia a condutividade térmica;
- A água pode ter um efeito de dissipação nas temperaturas do solo influenciando o balanceamento do sistema;
- A presença de um aquífero já em exploração ou um perímetro de protecção pode inviabilizar o projeto;
- As águas subterrâneas são sempre ser um factor importante no planeamento e execução da perfuração (ligação de aquíferos, artesianismo, etc.);
- A produtividade do aquífero determina o limite de extracção e, portanto, pode limitar a exploração geotérmica em sistema aberto;
- O aumento de temperatura da água do aquífero pode gerar contaminação microbiológica;
- O quimismo da água pode influenciar a corrosão ou a precipitação de materiais nos equipamentos da instalação.

CASO ESTUDO — PROJECTO GEOTÉRMICO EDIFÍCIO PHOENIX FIDELIDADE

- PROJECTO EDIFÍCIO PHOENIX
- ENQUADRAMENTO GEOLÓGICO
- DIMENSIONAMENTO
- EQUIPAMENTOS, MATERIAIS E METODOLOGIAS
- Considerações Finais

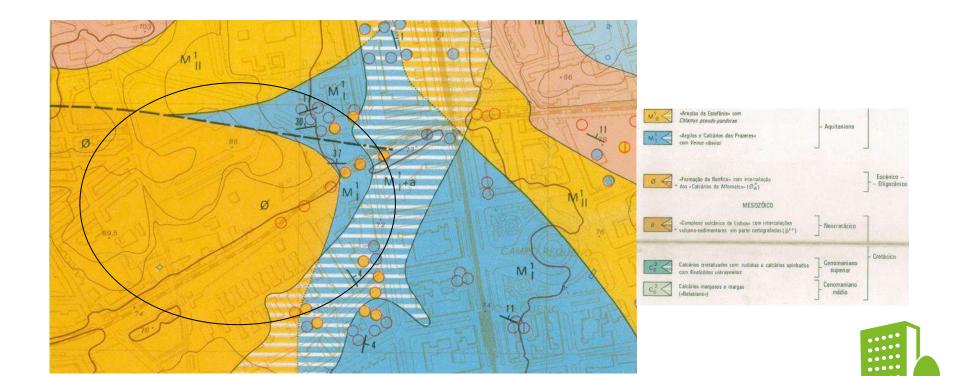
PROJECTO GEOTÉRMICO EDIFÍCIO PHOENIX DADOS FIDELIDADE




- O projecto Edifício PHOENIX pretende uma eficiência energética de excelência – opção geotermia de baixa entalpia, com recurso a bombas de calor geotérmicas (satisfação das necessidades energéticas de aquecimento e arrefecimento do ambiente interior e produção de AQS)
- O espaço a climatizar compreende o Edifício Sede do Grupo Fidelidade localizado na Av. Álvaro Pais, em Lisboa, com 8 pisos de escritórios elevados, 2 pisos de escritórios parcialmente abaixo do solo e 3 pisos de estacionamento abaixo do solo, num total de 41 000 m²
- A nível energético e ambiental, prevê-se a certificação energética na Classe A e as certificações de sustentabilidade LEED Gold a Platinum e WELL Gold a Platinum.

PROJECTO GEOTÉRMICO EDIFÍCIO PHOENIX DIMENSIONAMENTO FIDELIDADE

O dimensionamento do campo de captação / rejeição geotérmico foi realizado pela empresa
 PROM&E CONSULTING e teve por base os valores das potência térmica e dos consumos energéticos do edifício, bem como o enquadramento geológico e as propriedades térmicas do subsolo definidas pelo estudo geológico e geotérmico realizado pela SYNEGE



PROJECTO GEOTÉRMICO EDIFÍCIO PHOENIX CONTEXTO GEOLÓGICO FIDELIDADE

Na área em estudo afloram as formações designadas por "Argilas e Calcários dos Prazeres" com *Venus Riberoi* — M1I e a "Formação de Benfica" — Ø. Para além destas poderão ser interceptadas também as formações geológicas subjacentes, "Complexo Vulcânico de Lisboa (CVL)" — β e o Cretácico superior, "Calcários cristalinos com rudistas e calcários apinhoados" com *Neolobites vibrayeanus* — C3C.

Equipamento SYNEGE para realização de TRT:

- Foram realizados 2 furos à rotary com circulação de lamas, e em cada um deles foi realizado um teste de resposta térmica
- Os furos ficaram com cerca de 142 m de profundidade, pois foi considerada a profundidade a escavar (cerca de 20 m) e a profundidade dos furos definida em projeto (120 m)
- Colocação de protecção das sondas ao longo dos 22 m a escavar, para não serem danificadas durante a escavação
- Estas sondas foram instaladas de acordo com as definições do projecto, constituindo parte do mesmo

Equipamento SYNEGE para realização de TRT (*):

- Antes e após a instalação das sondas foram efectuados os respectivos ensaios de circulação e pressão para garantir a correcta instalação
- Os TRTs foram de acordo com as especificações da Agência Internacional de Energia (IEA) e pela Associação Internacional de Bomba de Calor Geotérmicas (IGSHPA)

- Os valores considerados na modelação do sistema foram obtidos pela média dos resultados dos TRT, para validação do dimensionamento inicial.
- Resultados obtidos (média dos 2 TRTs):

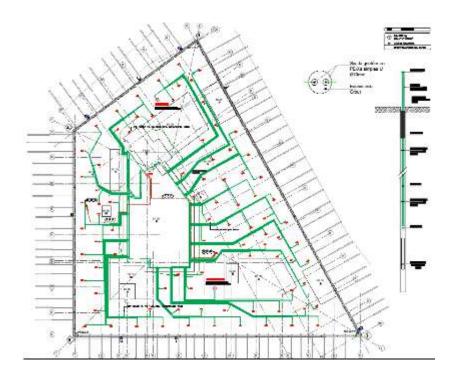
Temperatura média do terreno: 19 °C

Condutividade Térmica média: 2,4 W/(m.K)

Resistência Térmica média: 0,15 (m.K)/W

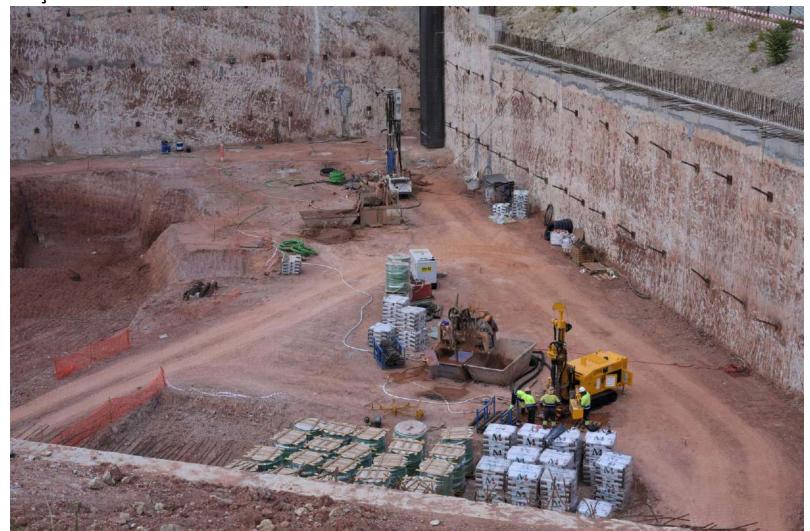
• Em cada sonda circulou um caudal de fluido de 0,4 l/s, para que o escoamento se realizasse em condições de **regime não laminar** (regime turbulento ou transiente) de forma a beneficiar de **melhores performances para as trocas de calor do permutador geotérmico**.

Dados fornecidos pelo projeto (Proem&e Consulting):

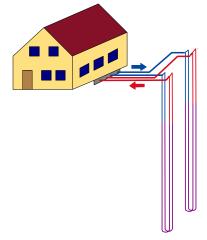

- potência térmica de arrefecimento 4 140 kW
- potência térmica de aquecimento, incluindo AQS 1 260 kW
- Sistema composto por:
 - 3 bombas de calor geotérmicas as bombas de calor geotérmicas funcionarão durante todo o ano (permitem produção de calor e de frio em simultâneo) cobrindo assim as necessidades térmicas no Inverno e eventualmente na meia estação
 - 3 chiller de parafuso necessários quando as necessidades de arrefecimento se mostrarem superiores à capacidade do sistema geotérmico, o que se prevê no Verão e alguns períodos da meia estação

PROJECTO GEOTÉRMICO EDIFÍCIO PHOENIX SISTEMA GEOTÉRMICO FIDELIDADE

- Circuito primário, ou geotérmico, de acordo com o cálculo térmico efetuado, composto por um total de 90 permutadores de calor enterrados verticalmente, em circuito fechado, com uma profundidade de 120 m cada (total de 10 800 m)
- Cada BHE está afastado, no mínimo, 6 m do adjacente



CONSTRUÇÃO DA REDE VERTICAL - EDIFÍCIO PHOENIX FIDELIDADE


A execução do colector vertical projectado foi realizada pela empresa Geogradiente – Soluções Geotérmicas

Perfuração para Instalação de Sonda Geotérmica — Equipamento e materiais

Equipamentos utilizados na perfuração e colocação de sondas geotérmicas em sistemas fechados verticais – Borehole Heat Exchangers (BHE) – furação aos diâmetros de 152 e 130mm e profundidades de 120m.

Sonda HBR205GT HUTTE

Sonda SM-8GT SOILMEC

Sonda GT52 BERETTA

Tecnologias de Perfuração

Os dois tipos principais de perfuração para os BHE:

- **Furação à roto-percussão** com ar comprimido (martelo fundo-de-furo) essencialmente aplicada em materiais rochosos;
- Furação à rotary (com revestimento temporário e /ou circulação de lamas bentoníticas) –
 essencialmente aplicada nas formações com carácter de solo, detríticas e/ou coesivas,

Percussion	Rotation				
Digging Direct Push (Rc<50 Mpa)		Augering (Rc<60 Mpa)			
Cable tool	Rotary	Tricone (Rc<150 Mpa) Bit (Rc<60 Mpa) Coring Bit Polycrystaline Diamond Compact (PDC)			
	Head H Hydraulic Han	n The Hole Hammer (DTH), lammer (HH) nmer Drilling (HHD) ated formations)			
New Technologies: So	nic, Horizonta	l Directional Drilling (HDD), Coil Tubing,			

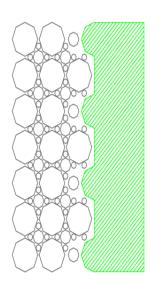
PERFURAÇÃO PARA INSTALAÇÃO DE SONDA GEOTÉRMICA — EQUIPAMENTO E MATERIAIS

Inserção da sonda geotérmica

PROJECTO GEOTÉRMICO EDIFÍCIO PHOENIX EXECUÇÃO BHE FIDELIDADE

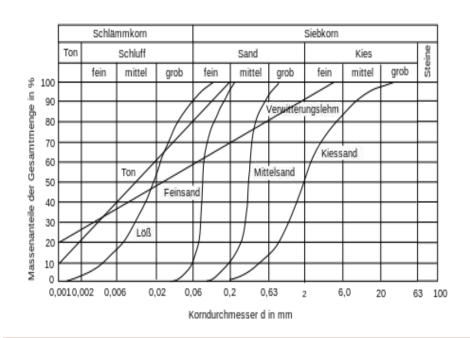
Legenda:

1 - Vista escavação do
Edifício Phoenix — 2
perfuradoras em
laboração para instalação
de sondas geotérmicas
2- "Bit" e varas utilizadas
na perfuração
3 e 4 - Inserção de sonda
e mangueira de injecção
5- Aspecto final de sonda
inserida (a conectar a
rede horizontal)



Perfuração para Instalação de Sonda Geotérmica — Equipamento e materiais

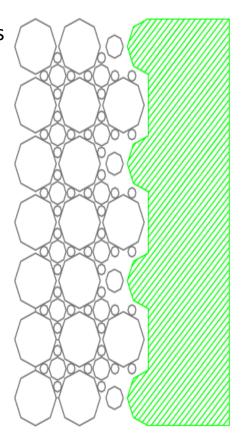
Tipo de sonda – Sondas simples Raugeo DN40 com paredes rugosa de modo a diminuir a permeabilidade vertical. Com peso que ajuda na inserção de 25kg (variável).



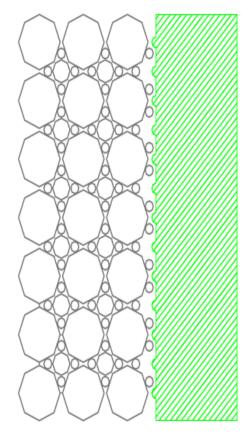
FUNCTIONAL outer layer - DEVELOPMENT (PE-Xa green - Geothermal probe - Informação fonte Rehau)

Generating different roughness, matched to the grain sizes of the grouting material.

- " Macro-roughness "grain size ca.1mm coarse sand fraction
- " Microroughness "grain size ca.0,2 mm fine sand fraction



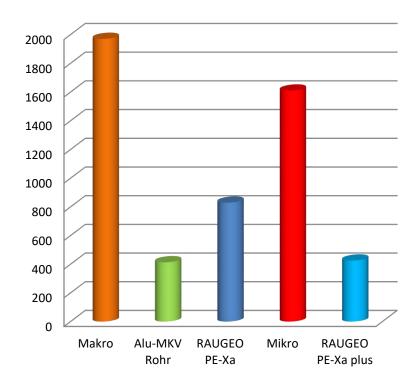
FUNCTIONAL outer layer - **DEVELOPMENT**


(PE-Xa green - Geothermal probe - Informação fonte Rehau)

" Macro-roughness "grain size ca.1mm - coarse sand

fraction

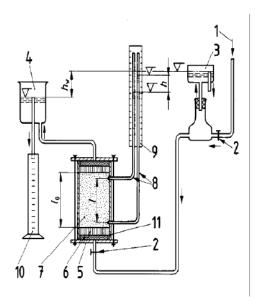
Microroughness
"grain size ca.0,2
mm - fine sand
fraction



TEST OF EXTRACTION FORCE

Auszugskräfte aus Verpressmaterial

Result: Significant increase in the pull-out forces by roughness


(PE-Xa green - Geothermal probe - Informação fonte Rehau)

TESTING SUBSURFACE WATERCOURSE

Triaxial tests for testing the hydraulic Tightness at ZAE Bayern

- Zuführung von entlüftetem Wasser
- 2 Schlauchklemme oder Kugelventil
- 3 Überlauf O (Oberwasser)
- 4 Überlauf U (Unterwasser)
- 5 Filte
- 6 Lochplatte mit Drahtgewebe
- 7 Probekörper
- 8 Standrohre (Piezometer)
- 9 Meßstab
- 10 Meßzylinder
- 11 Versuchszylinder
- h Differenz der Standrohrspiegelhöhen
- $h_{\rm w}$ Höhendifferenz zwischen Ober- und Unterwasserspiegel
- l durchströmte Länge
- l₀ Höhe des Probekörpers

Versuchsklasse 3

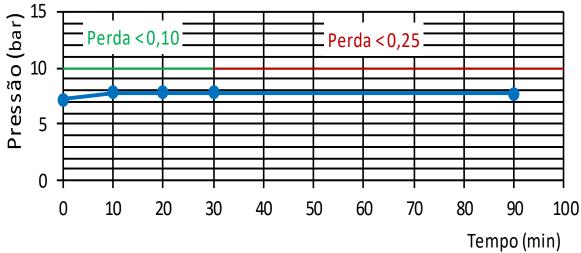
ANMERKUNG: Bei Nachweis stationärer Strömung darf der Versuch der Versuchsklasse 2 zugeordnet werden.

Quelle: DIN 18130-1: 1998-05

Fonte:Rehau

Ensaio Inicial – Ensaio de caudal e pressão segundo UNE 100715-1.

(10min a 6,0bar, após meia hora a sonda perde pressão por dilatação, depois 1h com perdas < a 0,2bar)


Instalação de Sonda Geotérmica — Ensaios de Integridade

Ensaio Final – Ensaio de pressão segundo UNE 100715-1 após 7dias do enchimento.

(10min a 12bar, após 1h com perdas inferiores a 30%, reduz-se 2bar, depois 30min com perdas < a 0,1bar e 90min com perdas < a 0,25bar)

Projecto Geotérmico Edifício Phoenix Instalação de Sonda

Injecção de grout térmico

PROJECTO GEOTÉRMICO EDIFÍCIO PHOENIX EXECUÇÃO BHE FIDELIDADE

- interes	-	001, 22.8	10 - Parcela E		S	Solkee		Foreign) New Josh	125	.0 E	uro Geotér	mico N.E
Plataforms - Cota 60.8		re - Cote 60,8	Meentone tunights Bookly		Botsey	10/08/2022 Flesh 15/08/2022				BHE. 15.05		
Ī			BHE 15:06					Sec	le Geotie	omica Vertica	d.	
# Funçle imm	Professi (w)	1 September 1	Descrição		Occarriències	Serverbassie Stillesterno est. 2 Compromente	ative):	42		FigHesure (m Caregorie Fire		10/M/200
P251			Arceites de guão médio o grosseiro overmeibados por vasta trans, medo cinnoctros com mans augêntos vermeibos rigos			* essentialo (kg		Sier	ent off T	oio na Elicy; Não 81,5 de colocio re Hão	Compress, just	2.00
188.0				C04%		Aydarbesia. Condustr. (W/s Men. agencias Cheenvaptes	A)	Exchine to Geotern kil. institu	kor E	C estimato en	ing:	status status status status status status status status
						its use the grown dress (back decade de chron Candah	57	Side: Side: Side: Odo:		60.0 60.0 85n	Feer Electric (Sear)	
						Exado de peto Pres (hado Pres (hado Petoto de pado Centro	đe	Sile		Não Não	Dyta:	
	ja 30					Pres, in (Bart). Frez, (Bart)	78	Tern	uhireera as (rein) as (rein) as (rein)	60.0	Deter	13/88/202
						Pres. (bar): Pres. (bar): Cleu	7,6 7,6 7,6 (m)n x 12	Sees	po (1444) po (1444) po (1444)	20.0 80.0 126,8 59,855, 1261	Perils (but)	8,00 8,20
	18 18					Preside bart	Posts - 0	20 W		Porta (125)	90 top 10) 120 130 pe (940)

Ensaios de controlo (pressão e circulação):

- antes da inserção da sonda
- após inserção e antes do enchimento
- após enchimento

PROJECTO GEOTÉRMICO EDIFÍCIO PHOENIX SISTEMA GEOTÉRMICO FIDELIDADE

- SENSORES DE TEMPERATURA Sensor de temperatura destinados à transmissão remota a controladores compatíveis
- Características técnicas principais:
 - Elemento de medidapassivo, PTC (1000Ω a 20°C)
 - Gama de medida-50ºC a 100ºC
 - Precisão+/- 0,5ºC
 - Número de condutores (ligações) .. 2 sem polaridade

- O sistema geotérmico do Edifício Phoenix diligenceia a segurança ambiental do ponto de vista hídrico
 - Circuito fechado
 - Perfuração acompanhada de revestimento
 - Sondas geotérmicas de alta resistência e tecnologia
 - Grout inerte e de permeabilidade quase nula
 - Fluido de circulação inócuo do ponto de vista ambiental
 - Distribuição espacial entre furos e entre zonas de furos permitindo não afectar a dinâmica das águas subterrâneas
 - Acompanhamento de todos os trabalhos por equipa de geologia

PROJECTO GEOTÉRMICO EDIFÍCIO PHOENIX CONSIDERAÇÕES FINAIS FIDELIDADE

- Considera-se que o projecto do Edifício Phoenix será um projecto de referência nacional de aplicação de uma energia com fonte renovável, enquadrando-se nos desafios e metas europeias que referem um aumento em 49% do uso de energias renováveis até 2030, nos edifícios, e uma redução em 55% dos gases com efeito de estufa
- Um projeto bem dimensionado é optimizado nos custos e origina uma exploração sustentável a longo prazo - modelo para o desenvolvimento do mercado do aproveitamento geotérmico superficial
 - A necessidade de **redução da dependência dos combustíveis fósseis**, quer por razões ambientais, quer económicas, dita que aproveitemos este recurso renovável sob os nossos pés

OBRIGADO!

© Synege Núcleo Empresarial de Venda do Pinheiro - Zona Norte, Rua C - Pavilhão 60

> © Geogradiente – Soluções Geotérmicas Av. 9 de Julho, nº19, 1ºEsq - 2665-552 – Venda do Pinheiro

REFERÊNCIAS BIBLIOGRÁFICAS

- Moitinho de Almeida, F. (1986), "Carta Geológica de Lisboa", Folha 4 Escala 1:10 000. Serviços Geológicos de Portugal, Lisboa, 1986
- Pais, J. et al (2005) Carta geológica 1:50.000, nº 34–D, (Lisboa). Instituto Nacional de Engenharia Tecnologia e Inovação, Lisboa.
- Pais, J. et al (2006) Notícia explicativa da Carta geológica 1:50.000, nº 34–D, (Lisboa). Instituto Nacional de Engenharia Tecnologia e Inovação, Lisboa.
- Sistema Nacional de Informação de Recursos Hídricos, SNIRH http://snirh.pt;
- Teixeira, C. e Gonçalves, F. (1980). Introdução à Geologia de Portugal. Instituto Nacional de Investigação Científica;
- Mands, E. and Sanner, B., 2001,"In-situ determination of underground thermal parameters";
- A. Georgiev, S. Tabakova and R. Popov, "The Bulgarian Experience in the Thermal Response Tests";
- Javed S., Claesson J., Beier Ra., "Recovery times after thermal response testes on vertical borehole heat exchangers";
- Burkhand Sanner, Göran Hellström, Jeff Spitler and Signhild Gehlin, "Thermal Response Test Current Status and World-Wide Application";
- Javed S., Claesson J., Beier RA., "Recovery times after Thermal Response Test on vertical borehole heat exchangers";
- Jin Luo, Joachim Rohn, Manfred Bayer and Anna Priess, "Thermal Efficiency Comparison of Borehole Heat Exchangers with Different Drillhole Diameters";
- Hemmingway, Phil; Long, Michael, "Thermal response testing of compromised borehole heat exchangers";
- Signhild Gehlin, "Thermal Response Test Method Development and Evaluation";
- Maria Carla Lourenço, Recursos geotérmicos de baixa entalpia em Portugal Continental, DGEG;
- Geotrainet: http://geotrainet.eu/
- Rehau;